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The radiation pattern of a focused transducer is reexamined. The radiation field is divided into 
an illuminated zone and a shadow zone. A numerically convergent solution of the pressure 
distribution in terms summations of Bessel functions is provided. This solution is 
computationally more advantageous than earlier results where a double or single integral in the 
complex plane is required. The pressure amplitude differs from earlier reports slightly for 
off-axis locations at low frequency. This difference may have significance for backscatter 
coefficient determination where scatterers are assumed present over a time-gated volume. The 
solution for a fiat disk radiator is obtained as a limiting case. 

PACS numbers: 43.20.Rz, 43.20.Tb, 43.20.Ye, 43.88.Yn 

LIST OF SYMBOLS u•', u 2' 
a radius of the active transducer element ¾0, 

c speed of sound in the medium 
f acoustic frequency w 
Gp focusing factor of a focused transducer 
i f-----•, unit of imaginary number x 
/(y,z) Eq. (16) xn, x'n 

Y,Z Jn( ' ) cylindrical Bessel function of order n, and argu- 
ment ( ß ) 
wave number Y',Z' 
pressure distribution 
normalized pressure distribution z 
pressure amplitude on the transducer surface 
total transmitted acoustic power 
the distance from the center of the transducer to z,, z', 
the observation point 
the distance from the point source on the trans- 
ducer to the observation point 
the radius of curvature 00 
the distance from the focus of the transducer to 

the observation point 
time variable 

dummy variable for integration q•o 
the normal velocity amplitude on the transducer 
surface 

acoustic axis 

location of pressure nodes in the focal plane 
normalized position of the observation point, Eq. 
(15) 

normalized position of the observation point, Eq. 
(82) 

axial distance from the center of transducer along 
the acoustic axis 

roots of J• (z) 
location of pressure nodes along the axis 
the half-aperture angle 
truncation error 

polar angle of the observation point 
polar angle of the point source relative to the focus 
of the transducer 

polar angle of the observation point relative to the 
focus of the transducer 

azimuthal angle of the point source relative to the 
focus of the transducer 

the velocity potential 
density of the medium 

angular frequency 
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•0 exp(--ikr) exp --i 1 ---- cos 0 
r =0 

X ( ! --cos 00) ]sin Oo*Jo(kro sin 0 sin Oo)dOo. (8) 
Let u= (r0/a)sin 00, then 

1 [a\ 2 2 [ 1 a 2 ,--cosOo=•[•)u[l+•(•)u2+...]. (9, 
Keeping the first term of Eq. {7) only and substituting into 
Eq. {6), we have 

c)(r,O) uøa2 exp(--ikr) exp --i 
r -o 2r 

(r)] X 1 ---- cos 0 u • uJo(ka sin Ou)du. (10) 
r0 

Equation (10) is the integral solution of the velocity po- 
tential in the polar coordinate system. 

The acoustic pressure can be derived from the velocity 
potential by 

O4(r,O) 
P(r'O)=iPø c)t =iPøtøqS(r'O)' (11) 

Define 

po---- poCUo, (12) 

which will be shown later as the power equivalent pressure 
amplitude on the transducer surface, then 

p( r,O) =i(po/uo)k4( r,O). (13) 

Substituting Eq. (10) into Eq. (13), we obtain the pressure 
distribution of the focused transducer as, 

p(r,O) =ipo -•- exp(--ikr) exp --i -- =0 2F 

(r)1 X 1---- cos 0 u • uJo(ka sin Ou)du. (14) 
ro 

From now on we will only discuss the pressure distribution 
given in Eq. (14). 

II. SERIES SOLUTIONS IN TERMS OF BESSEL 
FUNCTIONS 

The solution given in Eq. (14) can be transformed into 
a series solution by using the Lommel integrals. Define 

Y= ( ka2/r) [ 1 - ( r/ro)cos 0], 
(15) 

Z= ka sin 0, 

and 

I(Y,Z):Y fut=o exp(-i•u•)uJo(Zu)du, (16) 
then Eq. (14) is reduced to 

ipo exp(--ikr) 
p(r,O)-- 1--rcos O/to I( Y,Z). (17) 

The two-parameter problem similar to that given in 
Eq. (16) has been discussed in detail by Lommel, s The 
following two equations are given (Eq, 32 in Ref. 8): 

C= cos • (l-u 2) UJo(Zu)du=•u1(Y,Z), =0 

(18) 

s__ fu=0 sin((1 , l 1 -- u ) )UJo(Zu)du ='• u•(Y,Z), 
where 

ut(Y,Z)= •, (--1)"[•) J2n+l(Z), 
(19) 

[ y\ 2n+ • 

n=0 

These equations can be obtained by repeated use of inte- 
gration by parts using 

f : ZnJn_ l(Z)dZ=ZnJnZ). (20) 
Some manipulation of the above equations provides the 
general solution for Eq. (16) as 

I(Y,Z) =exp[ --i( Y/2 ) ] [ut(Y,Z) + iu2( Y,Z) ], 
(21) 

and its amplitude is given by 

II(Y,Z)I ={[ui(Y,Z)]•+[u2(Y,Z)]2} I•. (22) 
It is sometimes more advantageous to use 

[ y\Zn 

u[(Y,Z)= • (--1)n[•) J•+i(Z), n=0 

(23) 

• [ y\2n+l u•(Y,Z)---- (--1)"[) J•n+l(Z), tt=O • 
then Eq. (21 } becomes 

l(Y,Z)=exp --i • [u'•(Y,Z}+iu•(Y,Z)], (24} 
The series u• and u• converges for all values of Y and Z. 
They may converge slowly, however, for some values of Y 
and Z. Observing the ratio of Y/Z=--sin(a)/tan(O•) 
with the help of Eq. (3), we find 

<1, shadow zone (a<O•<•-a), = or > 1, illuminated zone (01<a or O•<•--a). 

Depending on the value of 01, the radiation field is divided 
into two zones, the shadow zone and the illuminat• zone, 
as depict• in Fig. 2. 

&. Solution for the shadow zon• (a<O• <•--a) 

Since I Y/ZI < 1 for a < 0• < •-a, the series given in 
Eq. (22) converg• unifomly, and •. (23) is used di- 
rectly with •. (17) to calculate the pressure distribution 
in the shadow zone. 
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FIG. 2. The definition of illuminated and shadow zones and the boundary 
line for a focused transducer. 

B. Solution on the boundary (0•=a or 0•-----•r-a) 

Since I Y/Z[ = 1 for 0• =a, or 0• =rr--a, the functions 
in Eq. (22) can be expressed explicitly as 

1 

Ul(+Z,Z) = -4- • ( -- l)nJ2n+l(Z) = 4-• sin(Z), n=0 

(26) 

u2( + z,z)= • 

-: [Jo(Z) -cos(Z) 1, --2 

Therefore: 

+iZ) 1 --exp(•=iZ)J0(Z) I(+Z,Z) =exp -•-- 2i 

and its amplitude is 

(27) 

IX(•z,z)l =«œ1+[Jo(Z)12-2cos(Z)Jo(Z)P •. 
(28) 

C. Solution for the illuminated zone (0• <a or 

Since I Y/Z] >l for Of<a, or Ol>rr-ct, the series 
expressed as in Eq. (22) may converge slowly. However, 
the following identities 8 can be used: 

/Y z2\ 

(29) 

[r Z2• 
u(r,z) +vo(r,z), 

where 

rt•O 

oo 

•=o • J2n+•(Z). 
Substituting 

Z). 

Z2•.960a=+•(Z). 
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FIG. 3. Normalized pressure distribution in the focal plane of a focused 
transducer: (a) sina=0.1, ka=100 (Gp=5); (b} sin•=0.1, ka=300 
(Gp= 15). Dashed lines represent Eq. (40}, the solution by Lucas and 
Muir. 

The pressure distribution in the focal plane has also been 
given by Lucas and Muir 6 as 

2Jl ( ka t480000 Tm
3 Tr 0 0 0 rg
/F[0 
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FIG. 4. Normalized pressure distribution on the surface r= r 0 for a fo- 
cused transducer with sin a=0.1 and ka= 100 (Gp=5). 

Therefore the normalized pressure distribution is 

p•xia]=exp[ -ik(z-ro) ] re 1 -exp[ --iGp(ro/z-- 1 ) l z iGp(ro/z-- 1 ) ' 
(5o) 

and its amplitude is 

re sin[ ( G/2 ) ( ro/z--1) ] . 
From Eq. (51) the pressure maximum on the axis occurs 
at 

0.0 1.0 2.0 3.0 4.0 

ka=300 
(b) 

sinot--0.1 

1.2 

1.0- 
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0.0' 
0.0 1.0 2.0 3.0 4.0 

z# 0 

FIG. 5. Normalized axial pressure distribution of a focused transducer 
with (a) sina=0.1, ka=100 (Go=5); (b) sina=0.1, ka=300 
(Go= 15). Dashed line represent the exact solution Eq. (58). 

zmax 12 / 1 \ 

r0 -- 1--•+O[•). (52) 
This agrees with the result obtained by Lucas and Muir. 6 
Substituting (52) into (51 ), the pressure maximum on the 
axis is 

, [% 2• 6 
Pmax• [-•-+•)sin •> 1. (53) 

Shown in Fig. 5 are the axial pressure distributions as 
a function ofz/r o for sin a=0.1 and ka= 100 (G•,= 5) and 
ka=300 (G•,=16). It is important to notice that beyond 
the focal point, the pressure amplitude decays faster than 
1/z. For G•, > 2,r, pressure amplitude has a finite number of 
zeroes (pressure nodes) beyond the focal point at 

z n 1 

ro_l_2mr/Gv, n=l,2 .... <Gj, (54) 2•" 

For G•, < 2•r no such pressure nodes exist. 
The axial pressure distribution can be obtained with- 

out the use of Fresnel approximation. By letting 0=0 and 
r=z, Eq. (5) becomes 

r'= [z2+2zro(ro/z -- 1 ) ( 1 --cos 00) 1•/2. (55) 

Substituting into approximation23.280000 0.0 Td
(h 0.0 Td
([z2+2zro(ro/z ) P0000 0.0 Td
(with- ) Tj
ET
BT
egrato ) Tj
180 0 rg
/F080000 0.0 rectly,ude bwe2. 0exp(_ik
35.2800'= ( 
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FIG. 7. Normalized pressure distribution near the focal point of a focused 
traducer with sin a=0.1, ka=200. 

FIG. 9. Pressure distribution along the boundary line x=a as a function 
of axial distance z normalized by the Rayleigh distance ka2/2n, for a flat 
disk transducer with ka= 100. Top axis shows the corresponding value of 
z normalized by a. 

y [ <1, shadow zone (x>a), 

X-- [=1' boundary (x=a), (69) > 1, illuminated zone (x<a). 

Similar to the solution for the focused transducer, the so- 
lution is divided into the shadow zone and the illuminated 

zone by a boundary line, in this case, x=a, as shown in 
Fig. 8. Equation (21) is used in the shadow zone, Eq. (31) 
is used in the illuminated zone, and Eq. (27) is used for the 
boundary line. Many of the radiation field properties dis- 
cussed by Pierce 9 can be derived from the above formula- 
tion. 

A. On the transducer axis 

On the axis of the transducer, Z=0, ¾o = l, and Vl=0. 
From Eels. (68) and (31), we have the pressure distribu- 
tion on the axis of the transducer as 

exp(--ikz)[1--exp( 'ka2\] œaxiam =Ro --,-'•'•-) J, (70) 
and its amplitude is given by 

P = 2p0 { sin( ka2/4z} I- (71) 

Shadow zone 

Shadow :,one 

FIG. 8. The definition of illuminated and shadow zones and the boundary 
line for a fiat disk transducer. 

The exact solution of the axial pressure distribution can be 
obtained from Eq. (57) by letting ro-, 

Paxial =P0 exp ( -- ikz) 

and its amplitude is 

Equation (72) is the exact solution of the axial pressure 
distribution and agrees with Pierce 9 and Kinsler et al.l] 
For z>a, Eq. (72) reduces to Eq. (70). At the center of 
the transducer, the pressure amplitude is 
[Pce,ter [ = 2go sin (ka/2), the same as for the focused trans- 
ducer. 

B. On the boundary line 

The pressure amplitude on the boundary x=a can be 
found from Eqs. (68) and (27) to be 

Pc --ikr l---- Pboundary -•' • exp 2r 

X [l--exp(--ika sin O)Jo(ka sin 0)], (74) 

and its amplitude is 

I =? ( l + So ka sin O) 
--2 cos(ka sin O)Jo(ka sin 0)} l/•, (75) 

where sin 0 ----- a/•. Figure 9 shows the pressure 
distribution along the boundary line for ka = 100 as a func- 
tion of z/a. 

At the edge of the transducer, where z=0, the 
pressure amplitude is IP•age[ = (p0/2)[l +Jo2(ka) 
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FIG. 10. Angular pressure distribution of a flat disk transducer with 
ka=!00 at r=ka2/2•r, 2(ka2/2rr), 3(ka2/2rt), and 4(ka•/2•r), where 
ka2/2•r is the Rayleigh distance of the transducer. The dashed line rep- 
resents the function [Zli(ka sin O)/ka sin 0[. 

--2 cos(ka)Jo(ka)] ]/2, which is the same as that for a fo- 
cused transducer and is numerically similar to the solution 
by Pierce? 

C. The far field 

When the observation point is far away from the trans- 
ducer surface (r•ka2/2rr), the pressure distribution be- 
comes relatively simple. The far field can be obtained di- 
rectly from Eqs. (68) and (23), keeping the first term 
only: 

[ ( a2)] ka22J](kasinO) Pfar=P0 exp --ikr 1 +•-• 2r ka sin 0 (76) 
This is the well-known angular distribution pattern of a flat 
transducer, 9J2 when the phase correction --ka2/2r is dis- 
carded. 

D. Angular distribution 

It is import to realize that the far field angular distri- 
bution pattern is valid when the distance from the trans- 
ducer to the observation point is much 3.31j
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TABLE I. Pressure distribution of focused and fiat transducers: Summary of results. 

Transducer 

type Focused transducer Flat 



us( Y, Zo.-[-AZ): • c')qus( Y'Zø) q=O 3zq ( AZ)q' (A2) 

Using the partial derivatives of us(Y,Z) given by Gray and 
Mathews, 8 we have 

us( Y, Zo+ AZ) = • (-- 1)qx ( AZ)q(2Zo-I-AZ)q 
q=O q!( 2 Y)q 

X us+q( Y, Zo). (A3) 

Let Z=Zo+AZ, and Z0----Irl, then AZ=Z--Irl, and 
Eq. (A3) becomes 

[Z 2_ y2\q 

u•(Y,Z)= • (--1)q• ['•-•) us+q(Y,[Y[). 
q=O (A4) 

The functions us(Y,I YI ) are special cases of Eq. (A1), 
and can be expressed as 

J Jo( Y) +cos(Y) 
u2s(Y'lYI)=(-1) • 

tl=S-- 1 - Z (--1)•J•.(r) , 
(AS) 

s/Sin(Y) 
u2s+l(r'lr[)=(--1) • 

- • (-1)%•+t(Y) , 

where the natural extension of the Bessel functions of neg- 
ative argument has been used: 

J•- ¾)=(-1)%( Y). (A6) 

Equation (AS) is an extension of the results for us( Y, Y) 
given by Gray and Mathews and can be derived from Eq. 
(26). 

Substituting Eq. (AS) into Eq. (A4), and rearranging 
terms, we have 

and 

s/sin(y) n=s-• 
,,:$+,(Y,Z)=(-1) [ 5 Z n=O \ /z:- ¾2\ ( +(-:)s So(r)+cos(r) 2 

\ [ (z2-r: I 
ß {z:-r2•], 

[ z 2- r:• ], 

(A7) 

(A8) 

where Let s=0 in Eq. (A7) and s=l in Eq. (A8); we have 
the Lommel functions needed in Secß V: 

q=n 1 

cosEn(x)=cos(x)-- Z (--1) q •o (•q),. 
q=n 1 

sinEn(x)=sin(x)-- • (--1)q-- x 2q+l 
q=O (2q+l)! 

(A9) 

are the error functions of cos(x) and sin(x) when their 
Taylor exh2q.u0000 0 0 1 60.002 0 1 42.4870Sj
E 8.640000 Tf
0.0r Tdat
(needed ) Tj
42.720000 0.tnav7n
eeded 
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