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The radiation pattern of a focused transducer is reexamined. The radiation ficld 1s divided nto

an illuminated zone and a shadow zone. A numerically convergent solution of the pressure
distcibmtion _in terms summations of Besselfinctions ic nrgyided Jdhis galifion
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a kr? r The two-parameter problem similar to that given in
[ ( ) Eq. (16) has been discussed in detail by Lommel.® The
following two equations are given (Eq. 32 in Ref. 8):
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(a)

1.0 / B. On the hemispherical surface r=r,
08 ka=10

On the hemispherical surface passing through the focal
point (r=ry), we find Y=4G,sin’6/2 and
Y/Z=(a/ry)tan 6/2. Therefore,
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FIG. 4. Normalized pressure distribution on the surface r=r, for a fo- 08 ] /
cused transducer with sin «=0.1 and ke=100 (G,=5). : \
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Therefore the normalized pressure distribution is = 1 \
0.4
ro 1—exp[ —iG,(r/z—1)] T \
. =exp[ —ik(z—rg)] — - , 0.2
Paxial p[ ( O)] 2 le(ro/Z—l) \/
o ——
(50) 0.0 —
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and its amplitude is
or,
, ro (sin[(G/2) (ry/z—1)] (51)
P =7 | ety |

EI: 5 Narmalize jal nrassnre distrihution of a f uﬂ t;insdgigr

with (a) sina=0.1, ke=100 (G,=5); (b) sin a=0.1, ka=300
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This agrees with the result obtained by Lucas and Muir.$ 7 all? [r -1
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1.2 g ary line for sin a=0.1 and ka=100 and 300. From Eq.

(62) it can be proven that there are no pressure nodes
along the boundary line for any values of ka.

At the edge of the transducer, where r=a and 0=1/2,
the pressure amplitude is

| Peage| = (Po/2) [1+J5(ka) —2 cos(ka)Jo(ka) ]/
(64)

This expression indicates that the pressure amplitude at the
edge of the transducer is roughly half of the power equiv-
alent average pressure radiated from the transducer. Sim-
ilar phenomena has been observed for a flat piston
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FIG. 6. Normalized pressure distribution on the boundary line for a .
focused transducer with sin a=0.1, ka=100 (G,=5) and sin a=0.1, Since the pressure near the center of the transducer
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meaning of p, is desired. The total transmitted acoustic

From Eq. (58), the pressure node beyond the focal power can be computed as

point is actually located at

1
2, 1—(2nn/ka)* G, P=5—— f f |p|* ds, (65)
D TV = 4 Pot
= 1=2mm/G, " 12,..<57. (59)
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where the integral is chosen to be over the focal plane,
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n= o 22_y? specified. For | Y| <47 and N=7, we find £ <0.01.
— 2 (=1)*|Jzgy2(¥)cos E"(T) The above discussion is only a rough estimate of terms
n=0 needed. The actual number of terms needed is much
. (Zz— Yz\] smaller to obtain the degree of precision specified. For ex-
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where plitude, N=0 is needed to obtain £ <0.01.
g=n 1 Due to the nature of the series solution, recursive
cos E,(x)=cos(x)— > (—1)7 FTyRY x4, method should be used to calculate the values of the Bessel
q=0 (29)! (78) functions, since values of J,,(Z) for roughly n=0,...,2N 42
q=n are needed when any of the three solutions are used. Also,
sin E,(x)=sin(x)— 2, (—1)¢ TPRY X9t since most of the computation time is spent on calculating
q=0 (2¢+1)! the values of_Bessel functions. it is advised that polar co-
are the error functions of cos(x) and sin(x) when their  Ordinate systems be used. Then for a particular transducer
Taylor expansions are truncated to order », and an exten-  (ka=const), the argument for the Bessel functions is a
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Transducer
type Focused transducer Flat disk transducer
ka?
=—(1—:cos 6), Y=ka'/r,

Parameters '\ r Eq. (15) Eq. (67)

Z=kasin 6. Z—kasin 6

' — ikr)

Pressure _w

p(r0)= 1(v,2) Eq. (17} =i —i
distribution 1—rcos 6/, p(r0) =ipyexp(—ikr)I(Y,Z). Eq. (68)

v <1, shadow (a<6,<m—a), <1, shadow (x>a),
Zones [7=| =1 bowndary (Bi=a or f=r—a), Eaq. (29) 121 boundary (x=a), Eq. (69)
>1, illuminated (8, <a or 6, <7m—a). Z >1, illiminated (x<a).
General 1 Y
solution I(Y-Z)=qu=0 exP(—‘j uz)ufo(Z“)du Eq. (16)
Y
Shadow I( Y.Z)=exp(—i—)[ul(Y,Z)+iu2(Y,Z)] Eq. (21)
zone 2

u(Y.2), u,(Y,2Z) Eg. (19)

Boundary I(+Z,Z)=exp £i2) I exp(7i2)jo(2) Eq. (27)
2 +2i
. Via Yy Z¢

Iluminated U_yz)__!'mr_ IJ—‘HD _5“ —_L—L]JM[YJ.);;.P,_WMI Eg. (31)

;

v(Y,2), v((Y,2) Eq. (30)

tion are similar to that given by Williams.!” On the acous- It is now easy to show that the intensity distribution in the
tic axis, an exact solution is provided, and this solution  neighborhood of the focus is symmetrical about the geo-
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Using the partial derivatives of u,(Y,Z) given by Gray and
Mathews,8 we have

® (AZ)9(2Zy+DZ)¢
u(Y,Zo+AZ) = EO (=DIX— a1y
Xty 4(Y.Zp). (A3)

Let Z=Zy+AZ, and Z,=|Y|, then AZ=Z—|Y|, and
Eq. (A3) becomes

2 2

* q
us( Y1Z)= q;o (_l)qé_' (—2),_) us+q(Yy|Y| )
(A4)

The functions #,(Y,|Y|) are special cases of Eq. (Al),
and can be expressed as

sin(Y) "370
uzs+1(Y,Z)=(—1)‘( 5~

n=0

n=s ZZ_yZ n=w
- (—1)”.12,,(Y))sin( > )— > (="
n=0 n=0

> (—1)"J2,,+1(Y))cos( 7

n=s—1

>

n=0

(—1)”12,,(1’)),

(AS)
sin(Y)

2

uzs+1(Y’\Yl)=(—1)‘(

n=s—1
-2 (—1)‘12,,+1(Y)),

n=0
where the natural extension of the Bessel functions of neg-
ative argument has been used:

Jo(=Y)=(=1)",(Y). (A6)

Equation (AS5) is an extension of the results for u,(Y,Y)
given by Gray and Mathews and can be derived from Eq.
(26).

Substituting Eq. (AS5) into Eq. (A4), and rearranging
terms, we have

ZP—Y? Jo(Y) +cos(Y)
) +(— 1)‘(—2—

AR 6
J2n+2s+l( Y)COS En(T)

zZ:_Yy?
—Jzn+2s+2(Y)SiﬂEn( 27 )I, (A7)
and
Jo(Y) +cos(Y) "57! VA ¢ sin(Y)
uzs(Y,Z)=(—1)‘(M2c—osu— > (—1)”12,,(Y))cos( 3% )—(—l)s( n2
n=0
n=s—1 ZZ—YZ = 2_Y2
— E,O (—1)”J2,,+1(Y))sin( 7 )— EO(—H" Jz,,+2s(Y)cosE,,( 57 )
Z:—Y?
’_J2n+2s+1(Y)Sin E"(—ZY_) ]r (A8)

where

=n

g
_ _ _1)4 29
cos E,(x) =cos(x) EO( 1) (2q)!x )
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Let s=0 in Eq. (A7) and s=1 in Eq. (A8); we have
the Lommel functions needed in Sec. V:
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